• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Subscribe
  • Advertise

Power Electronic Tips

Power Electronic News, Editorial, Video and Resources

  • Products
    • Power Supplies
    • AC-DC
    • DC-DC
    • Battery Management
    • Capacitors
    • Magnetics
    • MOSFETS
    • Power Management
    • RF Power
    • Resistors
    • Transformers
    • Transistors
  • Applications
    • 5G
    • AI
    • Automotive
    • EV Engineering
    • LED Lighting
    • Industrial
    • IoT
    • Wireless
  • Learn
    • eBooks / Tech Tips
    • EE Training Days
    • FAQ
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • White Papers
    • Design Fast
  • Video
    • EE Videos & Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Engineeering Training Days
  • Newsetter Subscription

BLDC motor drive inverter board features 2.2-mΩ RDS(on), 80-V eGaN FET

November 9, 2021 By Redding Traiger

EPC announces the availability of the EPC9145, a 1 kW, 3-phase BLDC motor drive inverter using the EPC2206 eGaN FET.

The EPC9145 demonstration board is a 3-phase BLDC motor drive inverter board featuring the 2.2 mΩ maximum RDS(on), 80 V maximum device voltage EPC2206 eGaN FET. This board is tailored to e-bikes, eMotion, drones, and robot motor applications. With a 48 V bus voltage, it can deliver 15 ARMS steady state at 50°C temperature rise in natural air convection and can reach 20 ARMS (28 APEAK) with a heatsink attached. The EPC9145 has been tested up to 100 kHz, 60 V input, and 50 APEAK.

The EPC9145 contains all the necessary critical function circuits to support a complete motor drive inverter and the dimensions of the board are only 130 mm x 100 mm (including connector). The EPC9145 also features the ST Microelectronics, STDRIVEG600, smart motor drive GaN half-bridge driver.

GaN FETs switch fast with zero reverse recoveries. This feature enables a higher switching frequency in the 100 kHz range to eliminate the need for electrolytic capacitors and to reduce motor losses. Additionally, the dead time can be reduced to approximately 20 ns to allow higher torque per ampere. Overall, GaN devices improve inverter and motor system efficiency and reduce size and weight by integrating the inverter inside the motor.

Major benefits of a GaN motor drive exhibited with this demonstration board are lower distortion for lower acoustic noise, lower current ripple for reduced magnetic loss, lower torque ripple for improved precision, lower filtering for a lower cost. The board’s lower weight and size enables incorporation of the drive into the motor housing, and also supports low inductance, higher power density motors.

EPC provides full demonstration kits, which include interface boards that connect this inverter board to the controller board development tool. Compatible controller interface and controller boards to the EPC9145 are EPC9147A for Microchip, EPC9147B for Texas Instruments, EPC9147C for ST Microelectronics, and EPC9147E as a generic interface board.

The EPC9145 demonstration board is priced at $667.18 each and is available for immediate delivery from Digi-Key.

You may also like:


  • Artificial intelligence and machine learning for power electronics

  • The brushed DC motor: Still a very viable option, Part…

  • The brushed DC motor: Still a very viable option, Part…

  • The brushed DC motor: Still a very viable option, Part…
  • motion-control profiles
    Basics of motion-control profiles, Part 1: Context

Filed Under: Development Tools, inverters, Motors and motor control, Power Components, Power Management, Robotics Tagged With: epc

Primary Sidebar

Featured Contributions

Meeting demand for hidden wearables via Schottky rectifiers

The case for vehicle 48 V power systems

GaN reliability milestones break through the silicon ceiling

Developing power architecture to support autonomous transportation

What makes SiC tick?

More Featured Contributions

EE LEARNING CENTER

EE Learning Center

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE ENGINEERING TRAINING DAYS

engineering
“power
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

RSS Current EDABoard.com discussions

  • Input impedance matching network
  • Solder Thermal Interface Material
  • Is it possible to improve accuarcy of ad633
  • Unity Gain Buffer with 0 to 0.5V Range
  • Battery sensing circuitry for coin cell application

RSS Current Electro-Tech-Online.com Discussions

  • Trail camera
  • how to work on pcbs that are thick
  • can a AT89C51 be used as a rom?
  • Telegram Based Alarm - Sensor cable protection
  • using a RTC in SF basic

DesignFast

Component Selection Made Simple.

Try it Today
design fast globle

Footer

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Microcontroller Tips
  • Sensor Tips
  • Test and Measurement Tips

Power Electronic Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy