• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Subscribe
  • Advertise

Power Electronic Tips

Power Electronic News, Editorial, Video and Resources

  • Products
    • Power Supplies
    • AC-DC
    • DC-DC
    • Battery Management
    • Capacitors
    • Magnetics
    • MOSFETS
    • Power Management
    • RF Power
    • Resistors
    • Transformers
    • Transistors
  • Applications
    • 5G
    • AI
    • Automotive
    • EV Engineering
    • LED Lighting
    • Industrial
    • IoT
    • Wireless
  • Learn
    • eBooks / Tech Tips
    • EE Training Days
    • FAQ
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • White Papers
    • Design Fast
  • Video
    • EE Videos & Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Engineeering Training Days
  • Newsetter Subscription

Cryptographic authentication could be coming to wireless chargers

February 13, 2017 By Lee Teschler

Researchers from the Massachusetts Institute of Technology’s Microsystems Technology Labs have built a chip that blocks attempts to wireless charging unless the charger first provides cryptographic authentication.

The MIT researchers say their work is in response to a counterfeit goods problem that now plagues consumer electronics. The researchers presented the new chip at the recent International Solid-State Circuits Conference. They also claim the same technology also solves a problem that can arise when two or more devices share the same wireless charger: Two devices sharing a single charger will charge at much different rates if they are different distances from the charger’s electrical coil. The closest might charge fully while the other might remain virtually uncharged. In this case, the researchers’ new chip can slow the power transfer to the device nearer the charging coil, ensuring more equitable charge rates.

Anantha Chandrakasan, the Vannevar Bush Professor of Electrical Engineering and Computer Science, is the senior author on the conference paper. The first author is Nachiket Desai, an MIT graduate student in electrical engineering and computer science (EECS) when the work was done. They’re joined by Chiraag Juvekar, also an EECS graduate student at MIT, and Shubham Chandak, a graduate student in electrical engineering at Stanford University.

In a wireless charging system, both the charger and the target device contain metal coils and use magnetic induction to pass energy. The device’s coil must be tuned to the transmission frequency in order to receive power. The MIT researchers’ chief innovation is a more compact and efficient circuit for tuning the frequency of the receiving coil. A standard tuning circuit connects the coil to a series of capacitors for storing charge. Between each pair of capacitors is a switch; switching the capacitors on and off changes the receiver frequency.

“Those switches have severe requirements,” Juvekar says. “They either have to block a large voltage when they’re off, or they have to carry a large current when they’re on, or in some cases both. If a switch must block a big voltage, then it’s hard to put that on the chip. So it has to be a discrete component on the PCB, outside the chip. Or if it’s on the chip, it requires a specialized [manufacturing] process that might be expensive.”

Instead of a single coil attached to a bank of capacitors, the MIT researchers’ design uses a pair of coils attached to one capacitor each — no switches required. “The fact that those switches aren’t there anymore is a big advantage,” Juvekar says.

In the researchers’ chip, one of the coils — the main coil — is much larger than the other — the auxiliary coil. The main coil carries the chief responsibility for charging a device’s battery. A current flowing through the auxiliary coil produces a magnetic field that changes the tuning frequency of the main coil.

In the circuit connected to the auxiliary coil, the resistance can be continuously varied. When the resistance is low, the auxiliary coil produces a strong magnetic field, which changes the main coil’s tuning frequency so drastically that charging is impossible.

When the resistance in the auxiliary coil circuit is higher, the magnetic field is weaker, and the detuning is less drastic. There will still be some power transfer, but the charge rate is lower. That permits other, more distant devices to harvest more of the power transmitted by the charger coil.

The chip uses an authentication technique called elliptic curve cryptography, which is a public-key cryptographic technique. Using publicly available information, the chip can generate — and verify the response to — a question that only a charger with valid private information can answer. The chip doesn’t need to store a secret key of its own.

Elliptic curve cryptography is a well-established technique. But Chandrakasan’s group has developed a battery of methods for reducing chips’ power consumption, and the researchers found a way to simplify the encryption circuit so it takes up less space on the chip and consumes less power.

Filed Under: Power Supply News Tagged With: Massachusetts Institute of Technology, wireless charging

Primary Sidebar

Featured Contributions

Robust design for Variable Frequency Drives and starters

Meeting demand for hidden wearables via Schottky rectifiers

The case for vehicle 48 V power systems

GaN reliability milestones break through the silicon ceiling

Developing power architecture to support autonomous transportation

More Featured Contributions

EE LEARNING CENTER

EE Learning Center

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE ENGINEERING TRAINING DAYS

engineering
“power
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

RSS Current EDABoard.com discussions

  • The Analog Gods Hate Me
  • Snubbers in Flyback Converters
  • connector model question
  • Step Up Push Pull Transformer design / construction
  • floating node warning in LTSpice

RSS Current Electro-Tech-Online.com Discussions

  • Pic18f25q10 osccon1 settings swordfish basic
  • More fun with ws2812 this time XC8 and CLC
  • Pickit 5
  • turbo jet fan - feedback appreciated.
  • I Wanna build a robot

DesignFast

Component Selection Made Simple.

Try it Today
design fast globle

Footer

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Microcontroller Tips
  • Sensor Tips
  • Test and Measurement Tips

Power Electronic Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy