The U.S. Department of Energy’s (DOE) Advanced Research Projects Agency-Energy (ARPA-E) today announced $30 million in funding for 21 innovative projects as part of the Creating Innovative and Reliable Circuits Using Inventive Topologies and Semiconductors (CIRCUITS) program. CIRCUITS project teams will accelerate the development and deployment of innovative electric power converters that save energy and give the United States a critical technological advantage in an increasingly electrified economy.
Power electronic devices condition, control, and convert electrical power to optimize the transmission, distribution, and consumption of electricity. Power electronics are of critical national importance – 80 percent of all U.S. electricity could pass through these devices by 2030. CIRCUITS projects leverage a new class of efficient, lightweight, and reliable power converters based on wide bandgap (WBG) semiconductor technology, using materials like silicon carbide or gallium nitride instead of the silicon that is dominant today.
“Hardware built with WBG devices has the potential to be smaller, lighter, and much more energy-efficient, with applications across valuable sectors including transportation, information technology, the grid, and consumer electronics,” said ARPA-E Acting Director Dr. Eric Rohlfing. “Developments from CIRCUITS projects could one day lead to super-fast, compact electric vehicle chargers, more efficient ship propulsion systems, and lighter, aerodynamic aircraft that can carry more passengers with less fuel.”
WBG semiconductors allow devices to operate at significantly higher speeds, voltages, and temperatures than conventional semiconductor materials, and do so in smaller, lighter packages. Previous efforts by ARPA-E have focused primarily on WBG material and device development. CIRCUITS focuses on new circuit topologies and system designs, ensuring the performance benefits of these new WBG devices are maximized.
Details on all 21 of the CIRCUITS projects may be found here. Below are examples of some of the circuit projects:
Cree – Smart, Compact, Efficient 500kW DC Fast Charger (Category I) – $1,911,984 Cree Fayetteville (operating as Wolfspeed, A Cree Company) and its project team will build a DC fast charger for electric vehicles using a solid-state transformer based on silicon carbide (SiC). Such a device would offer significant improvements: efficiency (greater than 60% less power losses), size/weight (greater than 75% smaller size, 85% less weight), and cost (40% lower materials costs) over the state-of-the-art. If successful, the team will construct a 500 kW building block for a DC fast charger that is at least four times the power density of todays installed units.
Eaton Corporation — SiC-Based Wireless Power Transformation for Data Centers & Medium-Voltage Applications (Category I) – $1,988,270 Eaton Corporation and its project team will develop and validate a wireless-power-based computer server supply that enables distribution of medium voltage (AC or DC) throughout a data center and converts it to the 48 VDC used by computer servers. The Eaton team has targeted the data center sector, as it is quickly becoming a major consumer of electricity in the United States. If successful, project developments will reduce U.S. data center energy consumption and operating cost while creating a high-volume commercial market for SiC-based power converters.
Infineon Technologies Americas Corp. – Low Cost e-mode GaN HEMT Gate Driver IC: Enables Revolutionary Energy Savings in Variable Speed Drives for Appliance Motors (Category II) – $924,392 Infineon Technologies will develop a new, low-cost gate driver integrated circuit (IC) for use with GaN switches, an important component for controlling variable speed electric motors (VSD). Most VSDs today use silicon-based semiconductors, which are limited in performance compared to those based on wide bandgap semiconductors like GaN. If successful, Infineon’s integration of a gate driver IC together with GaN switches and simple packaging will enable cost reduction by a factor of two or three, simplified integration and improvement in energy savings compared to today’s solutions.
Leave a Reply