• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Subscribe
  • Advertise

Power Electronic Tips

Power Electronic News, Editorial, Video and Resources

  • Products
    • Power Supplies
    • AC-DC
    • DC-DC
    • Battery Management
    • Capacitors
    • Magnetics
    • MOSFETS
    • Power Management
    • RF Power
    • Resistors
    • Transformers
    • Transistors
  • Applications
    • 5G
    • AI
    • Automotive
    • EV Engineering
    • LED Lighting
    • Industrial
    • IoT
    • Wireless
  • Learn
    • eBooks / Tech Tips
    • EE Training Days
    • FAQ
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • White Papers
    • Design Fast
  • Video
    • EE Videos & Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Engineeering Training Days
  • Newsetter Subscription

Heat sinks, Part 2: Available components

December 24, 2018 By Bill Schweber

Part 1 of this FAQ looked at the basic issues associated with cooling and heat sinks. Part 2 focuses on the various heat sinks available.

Q: Are heat sinks limited to a single component such as an IC?

A: No, there are heat sinks which fit entire unit or chassis cool such as those which stretch across an entire enclosure or rack (Figure 1).

Fig 1: Heat sinks range in size from fingernail size to the full length of a large chassis (here, a high-power audio amplifier), and even larger in some specialty situations. (Image source: Takachi Takachi Electronics Enclosure Co, Ltd)

Q: A simple but obvious question: what is used as the material for heat sinks?

A: They are usually made of aluminum, but sometimes copper is used. While copper has better thermal conductivity than aluminum, it is heavier, more costly, and cannot be extruded (a low-cost and common way to make fabricate many heat sinks). Aluminum has favorable thermal, fabrication, weight, and other desirable attributes which make the preferred choice over copper in most cases

Q: How is the heat sink “attached” to the component it is cooling?

A: The answer, of course, depends on the heat sink style. For most IC heat sinks, there is a flat area which rests in the flat top of the IC or module package to be cooled. The heat sink may be fastened with small screws, a clip, a support strap, or even a single small screw directly to a tab on the component (if it has a thermal tab, as do many including this TO-220 package) (Figure 2).

Fig 2: The heat sink for a small, discrete TO-220 power transistor can be a simple extrusion (or even folded sheet metal) attached by a single screw to a integral tab; if the power dissipation is low, the tab alone may be sufficient. (Image source: Addicore.com)

Q: So, all it takes is to just attach the heat sink?

A: No, it requires more than simple placement. The heat sink must be in good thermal contact with the package, which requires an interposed thermal interface. This can be a very thin layer of special non-adhesive paste (often called thermal grease), or a special elastomeric pad, among other choices. The objective to have as little thermal resistance as possible between the IC or module and the heatsink, without even microscopic voids (they are thermal resistors).

Q: What are the sizes and styles of heat sinks?

A: They can be as small as a fingernail and as large as a chassis in a rack or an entire rack. The most common heat sink is an array of fins or pin, BFigure 3); the function of these “obstacles” is to interfere with airflow such that their heat can transfer from its solid surfaces to the surrounding air. These heatsinks are available in countless sizes, with many pin/fin configurations and shapes to meet the somewhat conflicting goals maximizing surface-to-air area while not excessively impeding the critical air flow.

Fig 3: This finned heat sink is designed specifically to fit on top of industry-standard “brick” DC/DC power supplies, with screw holes which match corresponding threaded inserts in the brick corners. (Image source: Advanced Thermal Solutions)

Q: What other types of heat sinks are available?

A: Heat sinks are available from dozens of vendors. Some are simple “wings” which clip onto a discrete device such as a TO-5 package transistor BFigure 4), which is a simple, folded, low-cost sheet metal stamping. There are also the multi-finned extrusions shown previously; finned devices but with bonded fins (more costly than a simple extrusion, but used when an extrusion cannot provide the desired greater fin height-to-gap aspect ratio; and cast or forged versions.

Fig 4: This heat sink for a TO-5 “canned” metal-package transistor package is a stamped strip of sheet metal which has been folded into a circle with “wings” and blackened to enhance emissivity; it is low cost and effective. (Image source: apprize.info)

For unique applications such as a spacecraft, the heat sink may be a custom casting or machined to fit the component and the available geometry of the area, obviously at far greater cost and lead time. Some very high-volume applications such as autos also use custom heat sinks to optimize both function and fit but fabricated using low-cost techniques.

Q: Is the necessary thermal analysis difficult?

A: As with most engineering issues, the answer is both yes and no. For the “no” part, basic thermal analysis is fairly straightforward, with clear equations that can be worked by “hand” using a basic spreadsheet or simple modeling program. These allow a rough estimate of the heat sink situation and challenge, often to within 10 or 20 percent of the final figure.

The “yes” part is where the heat sink must be considered as part of the overall board, enclosure, or chassis. Here, a thermal model of the overall system must be created and analyzed using thermal and fluid-flow equations. This model can be relatively simple or fairly complicated, depending on the mechanical and thermal design complexity as well as the fidelity and accuracy desired. It must take into account the airflow path, airflow “shadowing” of the heat sink by nearby larger components (even if they are cool), and the dissipation nearby components even if not blocking airflow.

Q: Do all ICs need a heat sink?

A: No, most ICs by themselves do not as long as the ambient temperature is within limits, as their own dissipation is negligible. Some ICs having modest dissipation have a thermal (metal) pad on their top, to reduce the thermal resistance to the extremal heat sink. Finally, some ICs (such as power regulators) have a thermal pad undeneath, but this is not intended to act as a heat sink. Instead, it is used to provide a thermal path between the IC and the copper tracks of the PC board which are routed underneath the IC. These tracks then function as conduits for the IC heat to flow to other copper areas of the PC board which then act as a “remote” heat sink.

Q: Given the thousands of basic heats available and their many variations, how do you make the choice as as to which how much heat sink is needed and which type? Is this difficult?

A: It used to be, but now, thermal modeling and simulation tools are available from many vendors which it a reasonably straightforward process. Many engineers start with a quick, rough analysis to get a sense of how much heat-sink performance they need and use that as a starting point.

Q: What about vendor support?

Vendors of heat sinks provide thermal and mechanical models of their heat sinks. These are used with the overall simulation to analyze if the heat sinking is physically compatible and provides the needed thermal performance in the application. This thermal analysis creates a thermal map of the component, PC board or product to assess performance (Figure 5).

Fig 5: A simulation program takes the thermal and mechanical model of a board (or box, module, or IC) and shows its 2-D temperature profile along with specific readings. (Image source: Quickfield/Tera Analysis Ltd.)

This FAQ has explored some of the many aspects of heat sinks and their role in the thermal management of an IC, board, or module. As with most simple-looking issues, their reality is both simple and complex at the same time. The heat sink is a passive, single-piece component without moving parts, but choosing the right one in terms of function, performance, cost, and size requires consideration and study.

EE World References

  1. Easy online guide to choosing the right heat sink
  2. Heat sinks excel in high-airflow systems
  3. Aluminum heat sinks compatible with TO 218, TO 220, TO 252, and TO 263 transistor packages
  4. Heat Sinks Cool Brick dc-dc Converters
  5. Heatsinks boost thermal performance of power resistors

References

  1. Maxim Integrated, Tutorial 5719, “Package Thermal Analysis Calculator Tutorial”
  2. Maxim Integrated, Tutorial 4803, “Thermal Characterization of IC Packages”
  3. Texas Instruments Application Report SLVA462, “Understanding Thermal Dissipation and Design of a Heatsink”
  4. Texas Instruments Application Report SPRA953C, “Semiconductor and IC Package Thermal Metrics”
  5. Electronics Cooling, “How to Select a Heat Sink”
  6. Comsol, “Heat Sink Application ID: 8574”
  7. Altium, “Overview of Heat Sink Design Basics and Principles”
  8. Gabrian International, “?”
  9. Elprocus, “What is a Heat Sink and its Importance”
  10. SimScale, “6 Factors to Consider for a Better Heat Sink Design”
  11. MyHeatSinks, “Heat Sink Basics”
  12. Anandtech,” Heatsink Guide – The Basics of Cooling & Heatsink Technology”
  13. Sunpower Electronics, “What is a heat sink?”

You may also like:


  • Heat sinks, Part 1: Thermal principles
  • select a heat sink
    Easy online guide to choosing the right heat sink
  • Heatsinks
    Heatsinks boost thermal performance of power resistors

  • Heat sinks excel in high-airflow systems

  • Heat Sinks Cool Brick dc-dc Converters

  • Basics of cooling transistors, IGBTs, and power FETs with heat…

Filed Under: FAQ, Featured, Heatsinks, Power Components Tagged With: altium, basics, comsol, FAQ, gabrianinternational, maximintegratedproductsinc, sunpowerelectronics, texasintrumentsinc

Reader Interactions

Comments

  1. Alexander729 says

    July 21, 2020 at 3:23 pm

    This calculator ought to not be made use of in circumstances where the warm resource is much smaller sized than the base of the heat sink

Trackbacks

  1. How do thermal interface materials help in power electronics cooling? - Power Electronic Tips says:
    March 17, 2025 at 5:01 am

    […] management considerations for board-mounted dc/dc converters Heat sinks, Part 2: Available components and performance How many ways are there to measure temperature? Liquid cooling for precise temperature control […]

Primary Sidebar

Featured Contributions

Robust design for Variable Frequency Drives and starters

Meeting demand for hidden wearables via Schottky rectifiers

The case for vehicle 48 V power systems

GaN reliability milestones break through the silicon ceiling

Developing power architecture to support autonomous transportation

More Featured Contributions

EE LEARNING CENTER

EE Learning Center

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE ENGINEERING TRAINING DAYS

engineering
“power
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

RSS Current EDABoard.com discussions

  • The Analog Gods Hate Me
  • Battery Deep Discharge – IC Workarounds?
  • Safe Current and Power Density Limits in PCB Copper(in A/m² and W/m³) simulation
  • Why so few Phase shift full bridge controllers?
  • Apc 650 upa

RSS Current Electro-Tech-Online.com Discussions

  • Simple LED Analog Clock Idea
  • The Analog Gods Hate Me
  • Wideband matching an electrically short bowtie antenna; 50 ohm, 434 MHz
  • PIC KIT 3 not able to program dsPIC
  • Parts required for a personal project

DesignFast

Component Selection Made Simple.

Try it Today
design fast globle

Footer

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Microcontroller Tips
  • Sensor Tips
  • Test and Measurement Tips

Power Electronic Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy