• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Subscribe
  • Advertise

Power Electronic Tips

Power Electronic News, Editorial, Video and Resources

  • Products
    • Power Supplies
    • AC-DC
    • DC-DC
    • Battery Management
    • Capacitors
    • Magnetics
    • MOSFETS
    • Power Management
    • RF Power
    • Resistors
    • Transformers
    • Transistors
  • Applications
    • 5G
    • AI
    • Automotive
    • EV Engineering
    • LED Lighting
    • Industrial
    • IoT
    • Wireless
  • Learn
    • eBooks / Tech Tips
    • EE Training Days
    • FAQ
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • White Papers
    • Design Fast
  • Video
    • EE Videos & Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Engineeering Training Days
  • Newsetter Subscription

PMIC keys on optical measurement sensitivity for wearable fitness/health apps

January 10, 2019 By Aimee Kalnoskas

PMICDesigners of always-on wearable and IoT devices now have the ability to extend battery runtime while shrinking form factor with the latest tiny, highly integrated power-management IC (PMIC) from Maxim Integrated Products, Inc.  The ultra-low-power MAX20345 integrates a lithium charger and debuts a unique architecture that optimizes the sensitivity of optical measurements for wearable fitness and health applications.

In wearables, optical-sensing accuracy is impacted by a variety of biological factors unique to the user. Designers have been striving to increase the sensitivity of optical systems, in particular, the signal-to-noise ratio (SNR), to cover a broader spectrum of use cases. Traditional low-quiescent-current regulators favored in wearable applications come with tradeoffs that degrade SNR on the wrist, such as high-amplitude ripple, low-frequency ripple and long-settling times. Some designers have even turned to high-quiescent-current alternatives to overcome these drawbacks, but they must deal with increased power consumption, which reduces battery runtime or requires a larger battery. The MAX20345 features a first-of-its-kind buck-boost regulator based on an innovative architecture that’s optimized for highly accurate heart-rate, blood-oxygen (SpO2) and other optical measurements. The regulator delivers the desired low-quiescent-current performance without the drawbacks that degrade SNR and, as a result, can increase performance by up to 7dB (depending on measurement conditions).

The MAX20345 is also the latest in a line of ultra-low-power PMICs for small wearables and IoT devices that help raise efficiency without sacrificing battery runtime. To meet these needs, the MAX20345 integrates a lithium-ion battery charger; six voltage regulators, each with ultra-low quiescent current; three nanoPower bucks (900nA typical) and three LDO regulators with ultra-low quiescent current (as low as 550nA typical).  Two load switches allow disconnecting of system peripherals to minimize battery drain. Both the buck-boost and the bucks support dynamic voltage scaling (DVS), providing additional power-saving opportunities when lower voltages can be deployed under favorable conditions. The MAX20345 is available in a 56-bump, 0.4mm pitch, 3.37mm x 3.05mm wafer-level package (WLP).

The MAX20345 is available at Maxim’s website for $4.45 (1000-up, FOB USA) and is also available from authorized distributors. The MAX20345EVKIT# evaluation kit is available for $57.00

Filed Under: Power Management Tagged With: maximintegratedproducts

Primary Sidebar

Featured Contributions

Meeting demand for hidden wearables via Schottky rectifiers

The case for vehicle 48 V power systems

GaN reliability milestones break through the silicon ceiling

Developing power architecture to support autonomous transportation

What makes SiC tick?

More Featured Contributions

EE LEARNING CENTER

EE Learning Center

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE ENGINEERING TRAINING DAYS

engineering
“power
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

RSS Current EDABoard.com discussions

  • Battery sensing circuitry for coin cell application
  • RF-DC rectifier impedance matching
  • Lightbox circuit help
  • Replacement of the rectifier diode with a MOSFET transistor?
  • differential amplifier with active load

RSS Current Electro-Tech-Online.com Discussions

  • Telegram Based Alarm - Sensor cable protection
  • using a RTC in SF basic
  • 100uF bypass Caps?
  • Lightbox circuit
  • how to work on pcbs that are thick

DesignFast

Component Selection Made Simple.

Try it Today
design fast globle

Footer

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Microcontroller Tips
  • Sensor Tips
  • Test and Measurement Tips

Power Electronic Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy