• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Subscribe
  • Advertise

Power Electronic Tips

Power Electronic News, Editorial, Video and Resources

  • Products
    • Power Supplies
    • AC-DC
    • DC-DC
    • Battery Management
    • Capacitors
    • Magnetics
    • MOSFETS
    • Power Management
    • RF Power
    • Resistors
    • Transformers
    • Transistors
  • Applications
    • 5G
    • AI
    • Automotive
    • EV Engineering
    • LED Lighting
    • Industrial
    • IoT
    • Wireless
  • Learn
    • eBooks / Tech Tips
    • EE Training Days
    • FAQ
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • White Papers
  • Video
    • EE Videos & Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Engineeering Training Days
  • Newsetter Subscription

SPICE integration models gate driver effects on switching losses

October 30, 2025 By Redding Traiger Leave a Comment

The Infineon Power Simulation Platform (IPOSIM) from Infineon Technologies AG is widely used to calculate losses and thermal behavior of power modules, discrete devices, and disc devices. The platform now integrates a SPICE-based model generation tool that incorporates external circuitry and gate driver selection into system-level simulations. The tool delivers more accurate results for static, dynamic, and thermal performance, taking into consideration non-linear semiconductor physics of the devices. This enables advanced device comparison under a wide range of operating conditions and faster design decisions. Developers can also customize their application environment to reflect real-world operating conditions directly within the workflow. As a result, they can optimize the application performance, shorten time-to-market, and reduce costly design iterations. IPOSIM integrates SPICE to support a wide range of applications where switching power and thermal performance are critical, including electric vehicle (EV) charging, solar, motor drives, energy storage systems (ESS), and industrial power supplies.

In the global transition to a decarbonized future, power electronics are essential for enabling cleaner energy systems, sustainable transportation, and more efficient industrial processes. This transformation increases the demand for advanced simulation and validation tools that allow designers to innovate early in the development cycle. At the same time, they must deliver highly efficient, high-power-density designs such as EV chargers, solar inverters, motor drives, and industrial power supplies, while minimizing design iterations and reducing development costs. Switching losses and thermal performance are decisive factors in this process, yet traditional hardware testing remains time-consuming, costly, and limited in capturing real-world conditions.

With the integration of SPICE, IPOSIM brings the simulation of real switching behavior fully online and helps users optimize their designs at an early stage of the development process. By extending system simulation to real-world conditions, the models make it possible to factor in critical parameters such as stray inductance, gate voltage, and dead time. The device characterization reflects the switching behavior under more realistic operating scenarios, taking the selected gate driver into account. The capability is fully integrated into IPOSIM’s multi-device comparison workflow, enabling users to select devices marked with the SPICE icon, configure application environments, and follow a guided simulation process. With its system-level accuracy and intuitive workflow, IPOSIM’s new SPICE-based models enable faster device selection and more reliable design decisions. The solution is fully embedded into IPOSIM, available online, and free of charge.

IPOSIM with SPICE is available now. Free company registration is required to use the feature. Available topologies and devices are marked with a SPICE icon.

The first version supports 1200 V silicon carbide discrete devices in IPOSIM’s predefined 3-phase 2-level (discretes) topology, together with 36 compatible gate drivers. Future updates will extend coverage to CoolMOS, CoolSiC modules, OptiMOS, GaN devices, and more gate driver devices.

You may also like:


  • What is gate charge, and why does it matter for…

  • How does negative differential resistance relate to neuromorphic computing and…

  • What are some positive uses for negative capacitance?

  • Why is a gate driver essential for high-performance power switching?

  • How to control dc microgrids

Filed Under: Automotive, Development Tools, Industrial, Motors and motor control, Power Components, Power Management Tagged With: infineontechnolgiesag

Reader Interactions

Leave a Reply

You must be logged in to post a comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Primary Sidebar

Featured Contributions

Ionic cooling: a silent revolution in thermal management

Robust design for Variable Frequency Drives and starters

Meeting demand for hidden wearables via Schottky rectifiers

The case for vehicle 48 V power systems

GaN reliability milestones break through the silicon ceiling

More Featured Contributions

EE LEARNING CENTER

EE Learning Center

EE TECH TOOLBOX

“ee
Tech Toolbox: Power Efficiency
Discover proven strategies for power conversion, wide bandgap devices, and motor control — balancing performance, cost, and sustainability across industrial, automotive, and IoT systems.

EE ENGINEERING TRAINING DAYS

engineering
“power
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

RSS Current EDABoard.com discussions

RSS Current Electro-Tech-Online.com Discussions

  • Need a fresh eye on my first PCB
  • restarting this Christmas project
  • desoldering
  • Unknown, to me, electric motor fitting
  • Can a small solar panel safely trickle-charge old NiMH AA batteries?

Footer

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Microcontroller Tips
  • Sensor Tips
  • Test and Measurement Tips

Power Electronic Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy