• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Power Electronic Tips

Power Electronic News, Editorial, Video and Resources

  • Products
    • Power Supplies
    • AC-DC
    • DC-DC
    • MOSFETS
    • Power Management
    • Battery Management
    • RF Power
    • Resistors
    • Capacitors
    • Magnetics
    • Transformers
  • Applications
    • LED Lighting
    • Rack Mount
    • Wireless
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Video
    • EE Videos
    • TI Power Videos
    • Teardown Videos
  • Resources
    • Design Fast
    • eBooks / Tech Tips
    • FAQ
    • LEAP Awards
    • Podcasts
    • Webinars
    • White Papers

Thermistors, thermocouples, and RTDs for thermal management

August 31, 2021 By Jeff Shepard Leave a Comment

Thermal management is the ability to control the thermal environment of an electronic system. It is often associated with cooling heat-generating electronics, but it also encompasses generating heat in cold environments to maintain optimal system operation or power wax-based linear motors. As a result of the many uses for thermal management, a wide variety of devices and components are designed for its implementation, including positive- and negative-temperature coefficient thermistors (PTCs and NTCs), thermocouples, etc. resistance-temperature detectors (RTDs). This FAQ begins by looking at various heating applications that use PTCs, then digs into the uses of NTC thermistors for temperature measurement and thermal protection, and closes with a comparison of NTC thermistors, thermocouples, and RTDs.

PTC thermistors can operate over a range of voltage and dissipation conditions to produce a nearly constant temperature. They are self-regulating with no thermostat needed and are available in many shapes, including squares, rectangles, discs, and cylinders (Figure 1). Several PTCs can be paralleled to provide heating over a larger area. PTC thermistor-based heating solutions are low cost, efficient, highly reliable with no moving parts, have long service lives, and can be mounted to various surfaces. Silicon PTC thermistors have a highly linear temperature coefficient (typically about 0.7%/°C). When needed, a linearization resistor can be added to enhance linearization.

Figure 1: PTC heating elements are available in a variety of shapes and sizes. (Image: Bourns)

Important considerations when specifying PTC thermistors include the switch temperature (Ts), which typically ranges from 50°C to 135°C, resistance at 25°C (R25), the surface area, and the maximum rated voltage (Vmax) (Figure 2). Ts is critical in heater designs. The maximum surface temperature of the PTC thermistor is only a few degrees higher than Ts, and the maximum heating temperature is directly related to Ts. The R25 needs to balance the need to minimize inrush currents upon start-up and be low enough to supply the power needed to heat the PTC thermistor to Ts. The thermistor cold resistance is an important factor determining the temperature ramp-up rate. A lower resistance produces higher I2R heating.

Figure 2: PTC thermistor heater operating curve. (Image: Thermistors Unlimited)

The power dissipated, and the surface area influences the heat-up and cool-down rates. Multiple PTC thermistors can be used to increase the effective surface area. The Vmax for these devices is typically specified for DC or 60Hz AC. These devices are used in a variety of automotive, communications, aerospace, consumer, and industrial applications such as:

  • Providing additional heat inside the cabin of a car or truck with a diesel engine or heat diesel fuel in cold operating conditions before injection into the cylinders.
  • In temperature compensated synthesizer voltage-controlled oscillators and crystal oscillators for temperature compensation (Figure 3).
Figure 3: Temperature-compensated crystal oscillators can use PTC thermistors to deliver highly linearized performance. (Image: ECS)
  • In electrically actuated linear wax motors, PTCs can provide the heat necessary to expand the wax. Wax motors are widely used in the aerospace industry to control fuel, hydraulic, and other oils. They are also used across a variety of systems where humidity or moisture negatively impacts the reliability and performance of electromagnetic-based solutions, including self-actuating thermostatic fluid mixing valves, door lock assemblies on washing machines, control valves in water heating systems, releasing the detergent dispenser door latch in dishwashers, opening and closing vents in greenhouses, and in paraffin microactuators in MEMs devices.
  • Electric motors and power transformers often include PTC thermistors in their windings to provide over-temperature protection and prevent insulation damage in the case of overheating. In this application, a thermistor with a non-linear response curve is used. The thermistor resistance rises rapidly at the maximum allowable winding temperature triggering an external relay and turning off the current flow.
  • Polymeric positive temperature coefficient (PPTC) devices can be used to provide overcurrent protection in electronic systems.

NTC thermistors

The resistance of NTC thermistors decreases exponentially with increasing temperatures. The steeper the resistance-temperature (RT) curve, the faster the resistance change. NTC thermistors have various uses, including temperature sensing and measurement, temperature protection devices and temperature compensation, and inrush current control.

An NTC thermistor placed near a heat-generating component such as a DC/DC converter or a CPU can be used to monitor the temperature and initiate temperature compensation actions as needed to protect sensitive devices from overheating. The temperature measurement circuit is typically a voltage divider composed of an NTC thermistor and a fixed-value resistor connected in series (Figure 4).

Figure 4: NTC temperature measurement circuits. (Image: TDK Corp.)

 NTC thermistors are placed on the substrate inside IGBT and MOSFET power modules to monitor the heatsink temperature and provide thermal protection. With the adoption of wide bandgap materials such as gallium-nitride (GaN) and silicon-carbide (SiC), the operating temperatures of power modules are rising, making it even more important to monitor the temperature accurately.

The contrast of LCDs changes as the ambient temperature changes. In applications that need to control LCD contrast, an NTC thermistor-based voltage divider is often used to adjust the drive voltage to compensate for changes in the ambient temperature.

Temperature-compensated crystal oscillators (TCXOs) are another example where NTC thermistors can be used to maintain stable operation as the ambient temperature changes. Just as in the case of using a PTC thermistor, an NTC thermistor can be used in certain TCXO applications to compensate for temperature changes. The oscillating frequency deviation can be controlled by inserting a compensation circuit with temperature properties that are the opposite of the crystal resonator. Separate compensation is needed for low-temperature and high-temperature operation and is provided by networks of an NTC thermistor, a capacitor, and a resistor (Figure 5).

Figure 5: NTC temperature compensation for crystal oscillators. (Image: TDK Corp.)

Where do thermocouples and RTDs fit in?

While an NTC thermistor exhibits a continuous, small, incremental change in resistance correlated to temperature variations, thermocouples are voltage-based devices and reflect proportional changes in temperature through the varying voltage created between two dissimilar metals. Both are good for temperature sensing and control but for different sets of applications. Most NTC thermistors have an operating temperature range of about -50 to 250 °C, while thermocouples operate from about -200 to 1750 °C.

Compared with thermistors, thermocouples have lower accuracy and can be more difficult to use since they require a conversion of mV to temperature. An NTC thermistor can be used as part of a Wheatstone Bridge for applications that need higher accuracy. For measuring temperature, a Wheatstone Bridge is structured as an out-of-balance comparator where the out-of-balance voltage, ΔV, can be measured and related to the thermistor’s resistance, thereby measuring the temperature.

Figure 6: A thermistor (Rx) can be used in a Wheatstone bridge for high accuracy temperature measurements. (Image: Ametherm)

Resistance temperature detectors (RTDs), also called resistance thermometers, consist of a length of fine wire typically wrapped around a ceramic or glass core. The wire is a pure material, such as platinum, nickel, or copper, that has an accurate resistance/temperature relationship that’s used to provide a measurement of temperature. RTD elements are fragile and are often housed in protective probes.

Stable operation is important in many long-term applications. Each of these temperature sensor technologies can drift over time, depending on their materials, construction, and packaging. Epoxy-coated NTC thermistors typically drift of about 0.2 °C per year. Hermetically-sealed NTC thermistors have a smaller 0.02 °C per year drift while thermocouples have the largest drift and can drift up to 2 °C per year, largely due to chemical changes, especially oxidation.

RTDs have higher accuracy and repeatability and can replace thermocouples in some industrial applications below 600 °C. Because of their accuracy and good stability, NTC thermistors are often used in applications such as thermometers and fire detectors. Thermocouples are more durable and lower in cost, making them suitable for many industrial applications.

Summary

Thermal management is important in a wide variety of applications for an equally wide variety of purposes. In some cases, designers are concerned with cooling hot components; in other instances, it is necessary to generate heat to maintain optimal system operation or power wax-based linear motors. The diverse uses of thermal management have resulted in numerous thermal management components, including positive- and negative-temperature coefficient thermistors (PTCs and NTCs), thermocouples, and resistance-temperature detectors (RTDs), and numerous application circuit implementations.

References

Ceramic PTC Thermistor Heaters, Bourns
Crystals with Integrated Thermistors, ECS, Inc.
Design Considerations for PTC Heaters, Thermistors Unlimited
How to use temperature protection devices: chip NTC thermistors, TDK
Resistance thermometer, Wikipedia
Thermistor, Wikipedia
Thermistors vs. Thermocouples, Ametherm

You may also like:


  • Fuses, eFuses, thermistors, and fusible resistors – which and when?
  • thermal management
    Thermal management considerations for board-mounted dc/dc converters
  • thermal management
    Basic principles of thermal management

  • What is inrush current?

  • The basics of thermistors in thermal management

Filed Under: FAQ, Featured, Power Components, thermistors, thermocouples Tagged With: FAQ

Reader Interactions

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Primary Sidebar

CURRENT DIGITAL ISSUE

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

More from the digital archive

DesignFast

Component Selection Made Simple.

Try it Today
design fast globle

Subscribe to our Newsletter

The Power Electronic eNewsletter delivers breaking electronic and power component news, resources, product innovations and more.

Subscribe today

EE TRAINING CENTER CLASSROOMS

EE Classrooms

RSS Current EDABoard.com discussions

  • How do you find the angle made by two isosceles triangles in a kite?
  • Thermal pad construction on pcb
  • FPGA LVDS with separate clock
  • Help understanding 915MHz transciever pcb layout
  • Ansys Electronic Desktop (HFSS) file opening failed????

RSS Current Electro-Tech-Online.com Discussions

  • Flickering (candle) LED to trigger 555
  • Identify a circuit.
  • Microcontrollable adjustable and switchable constant current source for driving LED's
  • Useful Handbook for Making Low Level Measurements
  • CRYPTOOOOO, but wait i am no terrorist

Footer

EE World Online Network

  • DesignFast
  • EE World Online
  • EDA Board Forums
  • Electro Tech Online Forums
  • Connector Tips
  • Microcontroller Tips
  • Analog IC Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire and Cable Tips
  • 5G Technology World

Power Electronic Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us
Follow us on TwitterAdd us on FacebookFollow us on YouTube Follow us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy