• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Power Electronic Tips

Power Electronic News, Editorial, Video and Resources

  • Products
    • Power Supplies
    • AC-DC
    • DC-DC
    • MOSFETS
    • Power Management
    • Battery Management
    • RF Power
    • Resistors
    • Capacitors
    • Magnetics
    • Transformers
  • Applications
    • LED Lighting
    • Rack Mount
    • Wireless
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
      • Power Electronics & Programmable Power
  • Video
    • EE Videos
    • TI Power Videos
    • Teardown Videos
  • Resources
    • Design Fast
    • eBooks / Tech Tips
    • FAQ
    • LEAP Awards
    • Podcasts
    • Webinars
    • White Papers

Transphorm’s ships 250K GaN FETs, shows field failure data

December 13, 2018 By Aimee Kalnoskas Leave a Comment

650-V GaN FETsTransphorm Inc. disclosed that it has shipped more than 250 thousand high voltage GaN FETs. Used in customers’ mass production applications, the devices are manufactured by the company in its Aizu, Japan, wafer foundry.

Transphorm also stated that its wafer-foundry’s annual installed capacity base of 15 million parts of its popular 50 mohm product equivalent can easily scale to address 2x to 5x the volume. Further, when demand warrants it, the technology and manufacturing process can be structured to scale from the current 6-inch to 8-inch or potentially higher wafers.

“2018 has been a game-changing year for high voltage GaN,” said Primit Parikh, Co-founder and COO, Transphorm. “More than 250 thousand 650 V GaN FETs from Transphorm are deployed in our customers’ mass production, high performance power converter and inverter products. These products are available through various channels — even Amazon. With our production volumes to date, we’re able to conservatively estimate more than 1.3 billion field hours of operation with a field FIT rate in the low single digits as well as over a billion hours of Mean Time Before Failure at operating conditions from an extensive suite of operating and accelerated reliability testing.”

Transphorm is the first high voltage GaN FET supplier to show field failure data from devices shipped. This data is used to calculate the field failure rate in parts per million (ppm) and failure in time (FIT), which shows the technology’s reliability. Availability of field data is an important new phase for high voltage GaN in power systems, as it indicates a maturing technology.

As it is, the market’s proposed trajectory is positive. Market research and strategy consulting company Yole Développement (Yole) reports that the power GaN market will reach $408 million by 2023 in an aggressive scenario, with a 91 percent CAGR. The high voltage applications slated to drive that growth include fast chargers, data centers and other high-end power supplies.

Supporting that research, Transphorm’s in-production customers cross the Yole-referenced growth segments and others, including: PC Gaming Power Supplies [CORSAIR]; Server Power Supplies [Bel Power, Delta]; Servo Drives [Yaskawa]; Portable Power [Inergy/Telcodium]. And, notably, 2018 saw major steps forward in GaN’s commercialization with Nexperia’s plans to release 600 V+ GaN FETs and Infineon’s introduction of its 600 V portfolio.

An overview of Transphorm’s methodology for assessing early life failure is detailed in the paper: High Voltage GaN Switch Reliability.

Filed Under: Power Components, Power Supply News, Semiconductor, Transistors Tagged With: transphorm

Reader Interactions

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Primary Sidebar

CURRENT DIGITAL ISSUE

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

More from the digital archive

DesignFast

Component Selection Made Simple.

Try it Today
design fast globle

Subscribe to our Newsletter

The Power Electronic eNewsletter delivers breaking electronic and power component news, resources, product innovations and more.

Subscribe today

EE TRAINING CENTER CLASSROOMS

EE Classrooms

RSS Current EDABoard.com discussions

  • How to set USB port as RS-485 entrance? How to interpret Growatt solar inverter commands?
  • Find Critical Path in Cadence Genus?
  • Simulation of a Press-ON-Press-OFF push button
  • HFSS 2022 R2 - Waveguide port configuration
  • Why this antenna azimuth and elevation direction are the same?

RSS Current Electro-Tech-Online.com Discussions

  • How know if solder iron has good quality tip?
  • How does a transistor works as a switch?
  • Peltier control
  • How to set USB port as RS-485 entrance? How to interpret Growatt solar inverter commands?
  • Component Identification

Footer

EE World Online Network

  • DesignFast
  • EE World Online
  • EDA Board Forums
  • Electro Tech Online Forums
  • Connector Tips
  • Microcontroller Tips
  • Analog IC Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire and Cable Tips
  • 5G Technology World

Power Electronic Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us
Follow us on TwitterAdd us on FacebookFollow us on YouTube Follow us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy