• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Power Electronic Tips

Power Electronic News, Editorial, Video and Resources

  • Products
    • Power Supplies
    • AC-DC
    • DC-DC
    • MOSFETS
    • Power Management
    • Battery Management
    • RF Power
    • Resistors
    • Capacitors
    • Magnetics
    • Transformers
  • Applications
    • LED Lighting
    • Rack Mount
    • Wireless
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Video
    • EE Videos
    • TI Power Videos
    • Teardown Videos
  • Resources
    • Design Fast
    • eBooks / Tech Tips
    • FAQ
    • LEAP Awards
    • Podcasts
    • Webinars
    • White Papers

Here come perovskite LEDs

January 30, 2017 By Lee Teschler Leave a Comment

Engineering researchers at Princeton University say they have developed a technique for making LEDs in which nanoscale perovskite particles self-assemble themselves. The advance, reported Jan. 16 in Nature Photonics, could make perovskites a potential lower-cost alternative to gallium nitride and other materials used in LED manufacturing.

Perovskite is better known as a potential replacement for silicon in solar panels rather than for LEDs. That’s because perovskite can be cheaper to manufacture while offering as much efficiency as some silicon-based solar cells. To make perovskite-based LEDs, hybrid organic-inorganic perovskite layers are fabricated by dissolving perovskite precursors in a solution containing a metal halide and an organic ammonium halide. This is a relatively cheap and simple process.

The resulting semiconductor films could emit light in vivid colors when used in LEDs. But the crystals forming the molecular structure of the films have been too large, which made them inefficient and unstable. “The inability to create uniform and bright nanoparticle perovskite films has limited their potential,” said Barry Rand, an assistant professor of electrical engineering and the Andlinger Center for Energy and the Environment at Princeton.

“Our new technique allows these nanoparticles to self-assemble to create ultra-fine grained films, an advance in fabrication that makes perovskite LEDs look more like a viable alternative to existing technologies,” Rand, the lead researcher, added.

Perovskite is a mineral originally discovered in the mid-1800s in Russia and named for the Russian mineralogist Lev Perovski. The term “perovskite” extends to a class of compounds that share the crystalline structure of Perovski’s mineral, a distinct combination of cuboid and diamond shapes.

perovskite LED structure
Device structure of the perovskite LEDs. A schematic of a nanometer-sized grain with BA cations decorating its surface is shown on the right. Below is an energy diagram of I-perovskite (b) and Br-perovskite (c) LEDs.

In their new paper, Rand and his team report that the use of an additional type of organic ammonium halide, and in particular a long-chain ammonium halide, to the perovskite solution during production dramatically constrained the formation of crystals in the film. The resulting crystallites were much smaller (around 5-10 nm across) than those generated with previous methods, and the halide perovskite films were far thinner and smoother.

This led to better external quantum efficiency, meaning the LEDs emitted more photons per number of electrons entering the device. The films were also more stable than those produced by other methods.

Russell Holmes, a professor of materials science and engineering at the University of Minnesota, said the Princeton research brings perovskite-based LEDs closer to commercialization. “Their ability to control the processing of the perovskite generated ultra-flat, nanocrystalline thin films suitable for high-efficiency devices,” said Holmes, who was not involved in the research. “This elegant and general processing scheme will likely have broad application to other perovskite active materials and device platforms.”

Other authors on the paper were Princeton researchers Zhengguo Xiao, Ross A. Kerner, Lianfeng Zhao, Kyung Min Lee, and Tae-Wook Koh of the electrical engineering department, and Gregory D. Scholes and Nhu L. Tran of the chemistry department.

Filed Under: LED Lighting Tagged With: perovskite, princeton

Reader Interactions

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Primary Sidebar

CURRENT DIGITAL ISSUE

A frequency you can count on There are few constants in life, but what few there are might include death, taxes, and a U.S. grid frequency that doesn’t vary by more than ±0.5 Hz. However, the certainty of the grid frequency is coming into question, thanks to the rising percentage of renewable energy sources that…

More from the digital archive

DesignFast

Component Selection Made Simple.

Try it Today
design fast globle

Subscribe to our Newsletter

The Power Electronic eNewsletter delivers breaking electronic and power component news, resources, product innovations and more.

Subscribe today

EE TRAINING CENTER CLASSROOMS

EE Classrooms

RSS Current EDABoard.com discussions

  • Using LTspice to check Current sense transformer reset?
  • Plotting E_theta and E_phi using the fields calculator in HFSS
  • SRF04 module measure distance
  • Motherboard - worst case scenario
  • Will Wifi throughput be affected by RSSI (attenuation) in my setup?

RSS Current Electro-Tech-Online.com Discussions

  • Are Cross-wind compensation and Road crown compensation functions inputs to LKA function?
  • Interfacing ZMOD4410 with Arduino UNO
  • Help diagnosing a coffee maker PCB
  • Capacitor to eliminate speaker hum
  • Identify a circuit.

Footer

EE World Online Network

  • DesignFast
  • EE World Online
  • EDA Board Forums
  • Electro Tech Online Forums
  • Connector Tips
  • Microcontroller Tips
  • Analog IC Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire and Cable Tips
  • 5G Technology World

Power Electronic Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us
Follow us on TwitterAdd us on FacebookFollow us on YouTube Follow us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy