• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Subscribe
  • Advertise

Power Electronic Tips

Power Electronic News, Editorial, Video and Resources

  • Products
    • Power Supplies
    • AC-DC
    • DC-DC
    • Battery Management
    • Capacitors
    • Magnetics
    • MOSFETS
    • Power Management
    • RF Power
    • Resistors
    • Transformers
    • Transistors
  • Applications
    • 5G
    • AI
    • Automotive
    • EV Engineering
    • LED Lighting
    • Industrial
    • IoT
    • Wireless
  • Learn
    • eBooks / Tech Tips
    • EE Training Days
    • FAQ
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • White Papers
    • Design Fast
  • Video
    • EE Videos & Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Engineeering Training Days
  • Newsetter Subscription

SoC power management chips coordinate power use among 256 controllers

March 15, 2017 By Aimee Kalnoskas

Sonics, Inc., today introduced ICE-G3™, the second product in the Energy Processing Unit (EPU) family based on the ICE-Grain Power Architecture™. ICE-G3 includes all of the on-chip power management capabilities of ICE-G1™ EPU with the addition of a key new component called the cluster controller. The cluster controller supports definition of complex power states at the system level and implements those system states by closely coordinating the actions of up to 256 lower-level power grain controllers in an EPU design. Sonics has also enhanced its EPU Studio™ development environment to ease definition and automate generation of cluster controllers.

“Power architects designing complex systems need tight control over system power state transitions to optimize their total energy savings,” said Drew Wingard, CTO of Sonics. “ICE-G3 provides greater system level abstraction for on-chip power management as the cluster controller orchestrates the action of local grain instances. The cluster controller allows designers to describe state transitions with hardware protection against making illegal state transitions and much better coordination of the operation of individual power grain controllers. For example, when turning power back on, the cluster controller ensures proper ordering and priority.”

As designers partition their system-on-chip (SoC) into a larger number of managed power grains to save energy, they often encounter increasing interdependencies across grains, especially during the sequencing of power state transitions. ICE-G3 cluster controllers enable designers to define cluster operating points with specific power states for each grain controller. The cluster controller maps incoming events into desired operating points, then sequences each grain controller to the specified power state based on user-defined ordering groups that can vary based on operating point.

Cluster controller operating points are more powerful than conventional system power states in several ways: 1) they provide hardware protection against illegal operating point transitions, which greatly simplifies power control verification; 2) they support hierarchy, so an SoC-level cluster controller can drive a set of subsystem-level controllers to exploit regularity and enhance reuse; and, 3) they are implemented in fast hardware, ensuring that system power control can leverage the massive MSPS (millions of power states per second) capabilities of EPUs – without losing the ability to change the power control system in software.

Sonics has built a customer engagement model for ICE-G3 that represents a first for semiconductor IP vendors. The EPU Studio Configuration Trial lets designers test drive the actual IP using the EPU Studio development environment and only requires execution of a simple NDA rather than a full Evaluation License. The Trial features a fully integrated, step-by-step tutorial to help designers grasp EPU concepts while they rapidly design an EPU for an IoT sensor design in the environment. To request the Configuration Trial, visit www.sonicsinc.com and click on the Free Trial button.

Filed Under: Power Management, Simulation Tagged With: sonics

Primary Sidebar

Featured Contributions

Meeting demand for hidden wearables via Schottky rectifiers

The case for vehicle 48 V power systems

GaN reliability milestones break through the silicon ceiling

Developing power architecture to support autonomous transportation

What makes SiC tick?

More Featured Contributions

EE LEARNING CENTER

EE Learning Center

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE ENGINEERING TRAINING DAYS

engineering
“power
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

RSS Current EDABoard.com discussions

  • 12VAC to 12VDC 5A on 250ft 12AWG
  • Lightbox circuit help
  • Engineer's own PCB layout software guide?
  • LVS Mismatch Error in Simple Layout
  • Does mobility carrier ratio changes with Wn? (0.18um) inverter design

RSS Current Electro-Tech-Online.com Discussions

  • Lightbox circuit
  • Fuel Auto Shutoff
  • Kawai KDP 80 Electronic Piano Dead
  • Python help with keystroke entries
  • Do resistors fail like dominoes?

DesignFast

Component Selection Made Simple.

Try it Today
design fast globle

Footer

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Microcontroller Tips
  • Sensor Tips
  • Test and Measurement Tips

Power Electronic Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy