• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Subscribe
  • Advertise

Power Electronic Tips

Power Electronic News, Editorial, Video and Resources

  • Products
    • Power Supplies
    • AC-DC
    • DC-DC
    • Battery Management
    • Capacitors
    • Magnetics
    • MOSFETS
    • Power Management
    • RF Power
    • Resistors
    • Transformers
    • Transistors
  • Applications
    • 5G
    • AI
    • Automotive
    • EV Engineering
    • LED Lighting
    • Industrial
    • IoT
    • Wireless
  • Learn
    • eBooks / Tech Tips
    • EE Training Days
    • FAQ
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • Podcasts
    • White Papers
    • Design Fast
  • Video
    • EE Videos & Interviews
    • Teardown Videos
  • EE Forums
    • EDABoard.com
    • Electro-Tech-Online.com
  • Engineeering Training Days
  • Newsetter Subscription

Driver uses floating voltage source to control discrete standard power MOSFETs and IGBTs

November 15, 2023 By Redding Traiger

Littelfuse, Inc. announced the launch of the FDA117 Optically Isolated Photovoltaic Driver. This innovative product generates a floating power source, making it an exceptional choice for isolated switching applications in a wide range of industries.

The FDA117 is specifically designed to control discrete standard power MOSFETs and IGBTs using a floating voltage source, ensuring isolation between the low-voltage drive input side and the high-voltage load output side. With an input control current range of 5 mA to 50 mA, an integrated fast turn-off circuitry, and 5 kVRMS reinforced isolation, the FDA117 provides sufficient voltage and current to drive discrete power MOSFETs and IGBTs effectively.

One of the key differentiators of the FDA117 is its ability to generate a floating power source with up to 15.3 V voltage and 60 µA current, making it suitable for driving standard MOSFET devices and IGBTs. This feature allows for greater flexibility in application designs, enabling the direct driving of standard MOSFET/IGBT devices and securely turning off external power semiconductors in less than 0.5 milliseconds.

Product designs that can benefit from the FDA117 include power semiconductor applications in the following markets (to name a few): Industrial; Energy; Building Automation; Smart Home;

Whether it is used in custom solid-state relay designs, controlling electrical power and loads, or industrial process control, the FDA117 provides the necessary isolation barrier to protect equipment and individuals from electrical hazards.

The FDA117 is available in both 4-pin DIP through-hole and surface mount packages, providing pinout compatibility with other Photovoltaic Drivers available on the market. This compatibility ensures ease of integration into existing designs without any major modifications.

The FDA117 Optically Isolated Photovoltaic Driver includes the following key features: Operates with as low as 5 mA input control current; Enables driving standard power MOSFETs and IGBTs; Provides a floating output voltage ranging from 10.5 V to 15.3 V; Integrated fast turn-off circuitry for controlled switching; 5,000 VRMS reinforced insulation for enhanced safety; 4-pin surface mount and through-hole package options;

The FDA117 Optically Isolated Photovoltaic Drivers are available in 4-lead DIP quantities of 100/tube and 4-lead SMT in tape-and-reel quantities of 1,000. Place sample requests through authorized Littelfuse distributors worldwide.

You may also like:


  • How does digital isolation contribute to sustainability?

  • What’s a digitally isolated transceiver?

  • A nuclear-powered cardiac pacemaker? Yes, but…. (Part 1)

  • What technologies are used for digital isolators?

  • What is a capacitive digital isolator?

Filed Under: Development Tools, drivers, Industrial, MOSFETS, Power Components Tagged With: littelfuse

Primary Sidebar

Featured Contributions

The case for vehicle 48 V power systems

GaN reliability milestones break through the silicon ceiling

Developing power architecture to support autonomous transportation

What makes SiC tick?

Mitigate reverse recovery overshoot in MOSFET body diodes

More Featured Contributions

EE LEARNING CENTER

EE Learning Center

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE ENGINEERING TRAINING DAYS

engineering
“power
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.
“bills

RSS Current EDABoard.com discussions

  • Audio Switching
  • 12VAC to 12VDC 5A on 250ft 12AWG
  • AC amplifier, transistor with bias network
  • Amperage changes in DC-DC conversion
  • Power handling in RF waveguide components

RSS Current Electro-Tech-Online.com Discussions

  • stud mount Schottky diodes
  • using a RTC in SF basic
  • Hi Guys
  • LED circuit for 1/6 scale diorama
  • Can I use this charger in every country?

DesignFast

Component Selection Made Simple.

Try it Today
design fast globle

Footer

EE World Online Network

  • 5G Technology World
  • EE World Online
  • Engineers Garage
  • Analog IC Tips
  • Battery Power Tips
  • Connector Tips
  • DesignFast
  • EDA Board Forums
  • Electro Tech Online Forums
  • EV Engineering
  • Microcontroller Tips
  • Sensor Tips
  • Test and Measurement Tips

Power Electronic Tips

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy